3.5.65 \(\int \frac {\sqrt {\cos (c+d x)} (A+B \cos (c+d x)+C \cos ^2(c+d x))}{(a+a \cos (c+d x))^2} \, dx\) [465]

3.5.65.1 Optimal result
3.5.65.2 Mathematica [C] (warning: unable to verify)
3.5.65.3 Rubi [A] (verified)
3.5.65.4 Maple [B] (verified)
3.5.65.5 Fricas [C] (verification not implemented)
3.5.65.6 Sympy [F(-1)]
3.5.65.7 Maxima [F]
3.5.65.8 Giac [F]
3.5.65.9 Mupad [F(-1)]

3.5.65.1 Optimal result

Integrand size = 43, antiderivative size = 139 \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{(a+a \cos (c+d x))^2} \, dx=-\frac {(B-4 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}+\frac {(A+2 B-5 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 a^2 d}+\frac {(A+2 B-5 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 a^2 d (1+\cos (c+d x))}-\frac {(A-B+C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2} \]

output
-(B-4*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2 
*d*x+1/2*c),2^(1/2))/a^2/d+1/3*(A+2*B-5*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/co 
s(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/a^2/d-1/3*(A-B+C)*c 
os(d*x+c)^(3/2)*sin(d*x+c)/d/(a+a*cos(d*x+c))^2+1/3*(A+2*B-5*C)*sin(d*x+c) 
*cos(d*x+c)^(1/2)/a^2/d/(1+cos(d*x+c))
 
3.5.65.2 Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 8.25 (sec) , antiderivative size = 1108, normalized size of antiderivative = 7.97 \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{(a+a \cos (c+d x))^2} \, dx =\text {Too large to display} \]

input
Integrate[(Sqrt[Cos[c + d*x]]*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2))/(a 
+ a*Cos[c + d*x])^2,x]
 
output
(-2*A*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, S 
in[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Si 
n[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan 
[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(3*d*(a + a*Cos[c + d*x]) 
^2*Sqrt[1 + Cot[c]^2]) - (4*B*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*Hypergeometric 
PFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*Sec[d*x - Arc 
Tan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2] 
*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/( 
3*d*(a + a*Cos[c + d*x])^2*Sqrt[1 + Cot[c]^2]) + (10*C*Cos[c/2 + (d*x)/2]^ 
4*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^ 
2]*Sec[c/2]*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]* 
Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[ 
d*x - ArcTan[Cot[c]]]])/(3*d*(a + a*Cos[c + d*x])^2*Sqrt[1 + Cot[c]^2]) + 
(Cos[c/2 + (d*x)/2]^4*Sqrt[Cos[c + d*x]]*((-4*(-B + 2*C + 2*C*Cos[c])*Csc[ 
c])/d + (4*Sec[c/2]*Sec[c/2 + (d*x)/2]*(B*Sin[(d*x)/2] - 2*C*Sin[(d*x)/2]) 
)/d + (2*Sec[c/2]*Sec[c/2 + (d*x)/2]^3*(A*Sin[(d*x)/2] - B*Sin[(d*x)/2] + 
C*Sin[(d*x)/2]))/(3*d) + (2*(A - B + C)*Sec[c/2 + (d*x)/2]^2*Tan[c/2])/(3* 
d)))/(a + a*Cos[c + d*x])^2 + (B*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*Sec[c/2]*(( 
HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d* 
x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1...
 
3.5.65.3 Rubi [A] (verified)

Time = 0.84 (sec) , antiderivative size = 145, normalized size of antiderivative = 1.04, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.233, Rules used = {3042, 3520, 27, 3042, 3456, 3042, 3227, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {\cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{(a \cos (c+d x)+a)^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )+C \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^2}dx\)

\(\Big \downarrow \) 3520

\(\displaystyle \frac {\int \frac {\sqrt {\cos (c+d x)} (3 a (A+B-C)+a (A-B+7 C) \cos (c+d x))}{2 (\cos (c+d x) a+a)}dx}{3 a^2}-\frac {(A-B+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {\sqrt {\cos (c+d x)} (3 a (A+B-C)+a (A-B+7 C) \cos (c+d x))}{\cos (c+d x) a+a}dx}{6 a^2}-\frac {(A-B+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (3 a (A+B-C)+a (A-B+7 C) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}dx}{6 a^2}-\frac {(A-B+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3456

\(\displaystyle \frac {\frac {\int \frac {a^2 (A+2 B-5 C)-3 a^2 (B-4 C) \cos (c+d x)}{\sqrt {\cos (c+d x)}}dx}{a^2}+\frac {2 (A+2 B-5 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {(A-B+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {a^2 (A+2 B-5 C)-3 a^2 (B-4 C) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2}+\frac {2 (A+2 B-5 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {(A-B+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {\frac {a^2 (A+2 B-5 C) \int \frac {1}{\sqrt {\cos (c+d x)}}dx-3 a^2 (B-4 C) \int \sqrt {\cos (c+d x)}dx}{a^2}+\frac {2 (A+2 B-5 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {(A-B+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {a^2 (A+2 B-5 C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx-3 a^2 (B-4 C) \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{a^2}+\frac {2 (A+2 B-5 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {(A-B+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {\frac {a^2 (A+2 B-5 C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {6 a^2 (B-4 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{a^2}+\frac {2 (A+2 B-5 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {(A-B+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {\frac {\frac {2 a^2 (A+2 B-5 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}-\frac {6 a^2 (B-4 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{a^2}+\frac {2 (A+2 B-5 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {(A-B+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\)

input
Int[(Sqrt[Cos[c + d*x]]*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2))/(a + a*Co 
s[c + d*x])^2,x]
 
output
-1/3*((A - B + C)*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(d*(a + a*Cos[c + d*x]) 
^2) + (((-6*a^2*(B - 4*C)*EllipticE[(c + d*x)/2, 2])/d + (2*a^2*(A + 2*B - 
 5*C)*EllipticF[(c + d*x)/2, 2])/d)/a^2 + (2*(A + 2*B - 5*C)*Sqrt[Cos[c + 
d*x]]*Sin[c + d*x])/(d*(1 + Cos[c + d*x])))/(6*a^2)
 

3.5.65.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3456
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^n/( 
a*f*(2*m + 1))), x] - Simp[1/(a*b*(2*m + 1))   Int[(a + b*Sin[e + f*x])^(m 
+ 1)*(c + d*Sin[e + f*x])^(n - 1)*Simp[A*(a*d*n - b*c*(m + 1)) - B*(a*c*m + 
 b*d*n) - d*(a*B*(m - n) + A*b*(m + n + 1))*Sin[e + f*x], x], x], x] /; Fre 
eQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] & 
& NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] && GtQ[n, 0] && IntegerQ[2*m] && (In 
tegerQ[2*n] || EqQ[c, 0])
 

rule 3520
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(a*A - b*B + a*C)*Cos[e + f*x]*(a + b* 
Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(f*(b*c - a*d)*(2*m + 1))), x 
] + Simp[1/(b*(b*c - a*d)*(2*m + 1))   Int[(a + b*Sin[e + f*x])^(m + 1)*(c 
+ d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) - b*d*(2*m + n + 2)) + B*(b*c*m + a 
*d*(n + 1)) - C*(a*c*m + b*d*(n + 1)) + (d*(a*A - b*B)*(m + n + 2) + C*(b*c 
*(2*m + 1) - a*d*(m - n - 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, 
d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c 
^2 - d^2, 0] && LtQ[m, -2^(-1)]
 
3.5.65.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(506\) vs. \(2(181)=362\).

Time = 6.86 (sec) , antiderivative size = 507, normalized size of antiderivative = 3.65

method result size
default \(-\frac {\sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (2 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+12 B \left (\cos ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+4 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+6 B \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-24 C \left (\cos ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-10 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-24 \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+2 A \left (\cos ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-20 B \left (\cos ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+38 C \left (\cos ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-3 A \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+9 B \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-15 C \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+A -B +C \right )}{6 a^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(507\)

input
int((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+cos(d*x+c)*a)^2,x, 
method=_RETURNVERBOSE)
 
output
-1/6*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*A*(sin(1/2 
*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d 
*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^3+12*B*cos(1/2*d*x+1/2*c)^6+4*B*(sin 
(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1 
/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^3+6*B*cos(1/2*d*x+1/2*c)^3*(sin( 
1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticE(cos(1/ 
2*d*x+1/2*c),2^(1/2))-24*C*cos(1/2*d*x+1/2*c)^6-10*C*(sin(1/2*d*x+1/2*c)^2 
)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^( 
1/2))*cos(1/2*d*x+1/2*c)^3-24*cos(1/2*d*x+1/2*c)^3*C*(sin(1/2*d*x+1/2*c)^2 
)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^( 
1/2))+2*A*cos(1/2*d*x+1/2*c)^4-20*B*cos(1/2*d*x+1/2*c)^4+38*C*cos(1/2*d*x+ 
1/2*c)^4-3*A*cos(1/2*d*x+1/2*c)^2+9*B*cos(1/2*d*x+1/2*c)^2-15*C*cos(1/2*d* 
x+1/2*c)^2+A-B+C)/a^2/cos(1/2*d*x+1/2*c)^3/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/ 
2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/ 
d
 
3.5.65.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.12 (sec) , antiderivative size = 371, normalized size of antiderivative = 2.67 \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{(a+a \cos (c+d x))^2} \, dx=\frac {2 \, {\left (3 \, {\left (B - 2 \, C\right )} \cos \left (d x + c\right ) + A + 2 \, B - 5 \, C\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + {\left (\sqrt {2} {\left (-i \, A - 2 i \, B + 5 i \, C\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} {\left (i \, A + 2 i \, B - 5 i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-i \, A - 2 i \, B + 5 i \, C\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + {\left (\sqrt {2} {\left (i \, A + 2 i \, B - 5 i \, C\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} {\left (-i \, A - 2 i \, B + 5 i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (i \, A + 2 i \, B - 5 i \, C\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 \, {\left (\sqrt {2} {\left (i \, B - 4 i \, C\right )} \cos \left (d x + c\right )^{2} + 2 \, \sqrt {2} {\left (i \, B - 4 i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (i \, B - 4 i \, C\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 \, {\left (\sqrt {2} {\left (-i \, B + 4 i \, C\right )} \cos \left (d x + c\right )^{2} + 2 \, \sqrt {2} {\left (-i \, B + 4 i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-i \, B + 4 i \, C\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{6 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \]

input
integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+a*cos(d*x+c) 
)^2,x, algorithm="fricas")
 
output
1/6*(2*(3*(B - 2*C)*cos(d*x + c) + A + 2*B - 5*C)*sqrt(cos(d*x + c))*sin(d 
*x + c) + (sqrt(2)*(-I*A - 2*I*B + 5*I*C)*cos(d*x + c)^2 - 2*sqrt(2)*(I*A 
+ 2*I*B - 5*I*C)*cos(d*x + c) + sqrt(2)*(-I*A - 2*I*B + 5*I*C))*weierstras 
sPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + (sqrt(2)*(I*A + 2*I*B - 
5*I*C)*cos(d*x + c)^2 - 2*sqrt(2)*(-I*A - 2*I*B + 5*I*C)*cos(d*x + c) + sq 
rt(2)*(I*A + 2*I*B - 5*I*C))*weierstrassPInverse(-4, 0, cos(d*x + c) - I*s 
in(d*x + c)) - 3*(sqrt(2)*(I*B - 4*I*C)*cos(d*x + c)^2 + 2*sqrt(2)*(I*B - 
4*I*C)*cos(d*x + c) + sqrt(2)*(I*B - 4*I*C))*weierstrassZeta(-4, 0, weiers 
trassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 3*(sqrt(2)*(-I*B + 
4*I*C)*cos(d*x + c)^2 + 2*sqrt(2)*(-I*B + 4*I*C)*cos(d*x + c) + sqrt(2)*(- 
I*B + 4*I*C))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + 
c) - I*sin(d*x + c))))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2* 
d)
 
3.5.65.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{(a+a \cos (c+d x))^2} \, dx=\text {Timed out} \]

input
integrate((A+B*cos(d*x+c)+C*cos(d*x+c)**2)*cos(d*x+c)**(1/2)/(a+a*cos(d*x+ 
c))**2,x)
 
output
Timed out
 
3.5.65.7 Maxima [F]

\[ \int \frac {\sqrt {\cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{(a+a \cos (c+d x))^2} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} \sqrt {\cos \left (d x + c\right )}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{2}} \,d x } \]

input
integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+a*cos(d*x+c) 
)^2,x, algorithm="maxima")
 
output
integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*sqrt(cos(d*x + c))/(a*co 
s(d*x + c) + a)^2, x)
 
3.5.65.8 Giac [F]

\[ \int \frac {\sqrt {\cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{(a+a \cos (c+d x))^2} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} \sqrt {\cos \left (d x + c\right )}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{2}} \,d x } \]

input
integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+a*cos(d*x+c) 
)^2,x, algorithm="giac")
 
output
integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*sqrt(cos(d*x + c))/(a*co 
s(d*x + c) + a)^2, x)
 
3.5.65.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{(a+a \cos (c+d x))^2} \, dx=\int \frac {\sqrt {\cos \left (c+d\,x\right )}\,\left (C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )+A\right )}{{\left (a+a\,\cos \left (c+d\,x\right )\right )}^2} \,d x \]

input
int((cos(c + d*x)^(1/2)*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/(a + a*co 
s(c + d*x))^2,x)
 
output
int((cos(c + d*x)^(1/2)*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/(a + a*co 
s(c + d*x))^2, x)